Regulation of flavonoid biosynthesis in representatives of the tribe Phaseoleae DC.

Autor: E. A. Krylova, A. S. Mikhailova
Jazyk: English<br />Russian
Rok vydání: 2022
Předmět:
Zdroj: Биотехнология и селекция растений, Vol 4, Iss 3, Pp 15-25 (2022)
Druh dokumentu: article
ISSN: 2658-6266
2658-6258
DOI: 10.30901/2658-6266-2021-3-o1
Popis: Flavonoids play a crucial role in plant metabolism. Many of them have antioxidant activity, and they are also pigments that render a variety of colors to plant tissues. Foods rich in flavonoid compounds are considered as functional components of a healthy diet. Currently, there is an increased interest in studying genetic mechanisms underlying the coloration of plants. Flavonoid biosynthesis pathways are controlled by two groups of genes. Structural genes encode enzymes, while regulatory genes are responsible for transcription factors that activate the expression of structural genes. Transcription factors that belong to R2R3-Myb, bHLH-Myc and WDR families form the ternary MBW complex, which is involved in regulating the expression of structural genes of flavonoid biosynthesis. The mechanisms of regulation of the anthocyanins and proanthocyanidin biosynthesis by the MBW complex are described in detail for the model plant Arabidopsis thaliana L. This review summarizes data on the regulation of phenolic pigment biosynthesis and the features of phenolic pigment accumulation in plant tissues in the main representatives of the Phaseoleae tribe: soybean Glycine max (L.) Merr., common bean Phaseolus vulgaris L., adzuki bean Vigna angularis (Willd.) Ohwi & Ohashi, and cowpea V. unguiculata (L.) Walp. The species discussed in this review are the most important food legumes in many countries of the world and they comprise the staple food in diets of millions of people. Identification and characterization of the genes controlling the flavonoid biosynthesis pathways are necessary for successful breeding of modern varieties with an increased dietary value. Identification of the flavonoid accumulation patterns is essential for solving the problem of broadening the diversity of plant products.
Databáze: Directory of Open Access Journals