Harnessing machine learning for fiber-induced nonlinearity mitigation in long-haul coherent optical OFDM
Autor: | Elias Giacoumidis, Yi Lin, Jinlong Wei, Ivan Aldaya, Athanasios Tsokanos, Liam P. Barry |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Future Internet, Vol 11, Iss 1, p 2 (2018) |
Druh dokumentu: | article |
ISSN: | 1999-5903 11010002 |
DOI: | 10.3390/fi11010002 |
Popis: | Coherent optical orthogonal frequency division multiplexing (CO-OFDM) has attracted a lot of interest in optical fiber communications due to its simplified digital signal processing (DSP) units, high spectral-efficiency, flexibility, and tolerance to linear impairments. However, CO-OFDM’s high peak-to-average power ratio imposes high vulnerability to fiber-induced non-linearities. DSP-based machine learning has been considered as a promising approach for fiber non-linearity compensation without sacrificing computational complexity. In this paper, we review the existing machine learning approaches for CO-OFDM in a common framework and review the progress in this area with a focus on practical aspects and comparison with benchmark DSP solutions. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |