Autor: |
Lennart Adenaw, Quirin Bachmeier |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Applied Sciences, Vol 12, Iss 17, p 8456 (2022) |
Druh dokumentu: |
article |
ISSN: |
2076-3417 |
DOI: |
10.3390/app12178456 |
Popis: |
Manifold applications in transportation system engineering rely on accurate modeling of human mobility demand. This demand is often represented by so-called mobility plans. Distinguished by their levels of aggregation, activity-based and trip-based models are the most prominent types of demand models in the literature. Macroscopic trip-based models are widely available but do not model mobility at the person level. In contrast, activity-based approaches simulate mobility microscopically but are complex and thus rarely available. The goal of this article is to present, apply, and validate an approach to generate activity-based mobility plans which microscopically reproduce real-world mobility demand but circumvent the complexity of activity-based approaches. To achieve this, existing trip-based models and mobility surveys are employed. Application results for car mobility in the city of Munich show that the obtained mobility plans are realistic on both a microscopic and a macroscopic level with regard to time, space, and activities. The presented approach can thus be considered appropriate for generating activity-based mobility plans whenever the development of a full-scale activity-based demand model is infeasible. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|