Universal potential estimates for $ 1 < p\leq 2-\frac{1}{n} $

Autor: Quoc-Hung Nguyen, Nguyen Cong Phuc
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Mathematics in Engineering, Vol 5, Iss 3, Pp 1-24 (2023)
Druh dokumentu: article
ISSN: 2640-3501
DOI: 10.3934/mine.2023057?viewType=HTML
Popis: We extend the so-called universal potential estimates of Kuusi-Mingione type (J. Funct. Anal. 262: 4205–4269, 2012) to the singular case $ 1 < p\leq 2-1/n $ for the quasilinear equation with measure data $ \begin{equation*} -\operatorname{div}(A(x,\nabla u)) = \mu \end{equation*} $ in a bounded open subset $ \Omega $ of $ \mathbb{R}^n $, $ n\geq 2 $, with a finite signed measure $ \mu $ in $ \Omega $. The operator $ \operatorname{div}(A(x, \nabla u)) $ is modeled after the $ p $-Laplacian $ \Delta_p u: = {\rm div}\, (|\nabla u|^{p-2}\nabla u) $, where the nonlinearity $ A(x, \xi) $ ($ x, \xi \in \mathbb{R}^n $) is assumed to satisfy natural growth and monotonicity conditions of order $ p $, as well as certain additional regularity conditions in the $ x $-variable.
Databáze: Directory of Open Access Journals