aspBEEF: Explaining Predictions Through Optimal Clustering

Autor: Pedro Cabalar, Rodrigo Martín, Brais Muñiz, Gilberto Pérez
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Proceedings, Vol 54, Iss 1, p 51 (2020)
Druh dokumentu: article
ISSN: 2504-3900
DOI: 10.3390/proceedings2020054051
Popis: In this paper we introduce aspBEEF, a tool for generating explanations for the outcome of an arbitrary machine learning classifier. This is done using Grover’s et al. framework known as Balanced English Explanations of Forecasts (BEEF) that generates explanations in terms of in terms of finite intervals over the values of the input features. Since the problem of obtaining an optimal BEEF explanation has been proved to be NP-complete, BEEF existing implementation computes an approximation. In this work we use instead an encoding into the Answer Set Programming paradigm, specialized in solving NP problems, to guarantee that the computed solutions are optimal.
Databáze: Directory of Open Access Journals