Autor: |
Gerbner Dániel, Patkós Balázs, Vizer Máté, Tuza Zsolt |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Discussiones Mathematicae Graph Theory, Vol 42, Iss 4, Pp 1061-1074 (2022) |
Druh dokumentu: |
article |
ISSN: |
2083-5892 |
DOI: |
10.7151/dmgt.2335 |
Popis: |
A subgraph G of H is singular if the vertices of G either have the same degree in H or have pairwise distinct degrees in H. The largest number of edges of a graph on n vertices that does not contain a singular copy of G is denoted by TS(n, G). Caro and Tuza in [Singular Ramsey and Turán numbers, Theory Appl. Graphs 6 (2019) 1–32] obtained the asymptotics of TS(n, G) for every graph G, but determined the exact value of this function only in the case G = K3 and n ≡ 2 (mod 4). We determine TS(n, K3) for all n ≡ 0 (mod 4) and n ≡ 1 (mod 4), and also TS(n, Kr+1) for large enough n that is divisible by r. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|