Band Structure Calculations, Magnetic Properties and Magnetocaloric Effect of GdCo1.8M0.2 Compounds with M = Fe, Mn, Cu, Al

Autor: Gabriela Souca, Roxana Dudric, Karsten Küpper, Coriolan Tiusan, Romulus Tetean
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Magnetochemistry, Vol 10, Iss 8, p 53 (2024)
Druh dokumentu: article
ISSN: 2312-7481
DOI: 10.3390/magnetochemistry10080053
Popis: The magnetic properties, band structure results, and magnetocaloric effect of GdCo1.8M0.2 with M = Fe, Mn, Cu, and Al are reported. The band structure calculations demonstrate that all the samples have a ferrimagnetically ordered ground state, in perfect agreement with the magnetic measurements. Calculated magnetic moments and variation with the alloy composition are strongly influenced by hybridisation mechanisms as sustained by an analysis of the orbital projected local density of states. The XPS measurements reveal no significant shift in the binding energy of the investigated Co core levels with a change in the dopant element. The Co 3s core-level spectra gave us direct evidence of the local magnetic moments on Co sites and an average magnetic moment of 1.3 µB/atom was found, being in good agreement with the theoretical estimation and magnetic measurements. From the Mn 3s core-level spectra, a value of 2.1 µB/Mn was obtained. The symmetric shapes of magnetic entropy changes, the Arrott plots, and the temperature dependence of Landau coefficients clearly indicate a second-order phase transition. The relative cooling power, RCP(S), normalized relative cooling power, RCP(∆S)/∆B, and temperature-averaged entropy change values indicate that these compounds could be promising candidates for applications in magnetic refrigeration devices.
Databáze: Directory of Open Access Journals