Autor: |
Elisavet M. Sofikitou, Ray Liu, Huipei Wang, Marianthi Markatou |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Entropy, Vol 23, Iss 1, p 107 (2021) |
Druh dokumentu: |
article |
ISSN: |
1099-4300 |
DOI: |
10.3390/e23010107 |
Popis: |
Pearson residuals aid the task of identifying model misspecification because they compare the estimated, using data, model with the model assumed under the null hypothesis. We present different formulations of the Pearson residual system that account for the measurement scale of the data and study their properties. We further concentrate on the case of mixed-scale data, that is, data measured in both categorical and interval scale. We study the asymptotic properties and the robustness of minimum disparity estimators obtained in the case of mixed-scale data and exemplify the performance of the methods via simulation. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|