Autor: |
Ramalingam Shanmugam, Lawrence Fulton, Jose Betancourt, Gerardo J. Pacheco, Keya Sen |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 11, Iss 14, p 3112 (2023) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math11143112 |
Popis: |
The number of COVID-19 fatalities fluctuated widely across United States (US) counties. The number of deaths is stochastic. When the average number of deaths is equal to the dispersion, the distribution is the usual Poisson. When the average number of deaths is higher than the dispersion, the distribution is an intervened Poisson. When the average number of deaths is lower than the dispersion, the distribution is an incidence-rate-restricted Poisson (IRRP) type. Because dispersion of COVID-19 fatalities in some counties is higher than the average number of fatalities, the underlying model for the chance-oriented mechanism might be IRRP. Understanding where this overdispersion or volatility exists and the implications of it is the topic of this research. In essence, this paper focuses on the number of COVID-19 fatalities that fluctuated widely across United States (US) counties and develops an incidence-rate-restricted Poisson (IRRP) to understand where this overdispersion or volatility exists and the implications of it. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|