Mitochondrial Carriers Link the Catabolism of Hydroxyaromatic Compounds to the Central Metabolism in Candida parapsilosis

Autor: Igor Zeman, Martina Neboháčová, Gabriela Gérecová, Kornélia Katonová, Eva Jánošíková, Michaela Jakúbková, Ivana Centárová, Ivana Dunčková, L'ubomír Tomáška, Leszek P. Pryszcz, Toni Gabaldón, Jozef Nosek
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: G3: Genes, Genomes, Genetics, Vol 6, Iss 12, Pp 4047-4058 (2016)
Druh dokumentu: article
ISSN: 2160-1836
DOI: 10.1534/g3.116.034389
Popis: The pathogenic yeast Candida parapsilosis metabolizes hydroxyderivatives of benzene and benzoic acid to compounds channeled into central metabolism, including the mitochondrially localized tricarboxylic acid cycle, via the 3-oxoadipate and gentisate pathways. The orchestration of both catabolic pathways with mitochondrial metabolism as well as their evolutionary origin is not fully understood. Our results show that the enzymes involved in these two pathways operate in the cytoplasm with the exception of the mitochondrially targeted 3-oxoadipate CoA-transferase (Osc1p) and 3-oxoadipyl-CoA thiolase (Oct1p) catalyzing the last two reactions of the 3-oxoadipate pathway. The cellular localization of the enzymes indicates that degradation of hydroxyaromatic compounds requires a shuttling of intermediates, cofactors, and products of the corresponding biochemical reactions between cytosol and mitochondria. Indeed, we found that yeast cells assimilating hydroxybenzoates increase the expression of genes SFC1, LEU5, YHM2, and MPC1 coding for succinate/fumarate carrier, coenzyme A carrier, oxoglutarate/citrate carrier, and the subunit of pyruvate carrier, respectively. A phylogenetic analysis uncovered distinct evolutionary trajectories for sparsely distributed gene clusters coding for enzymes of both pathways. Whereas the 3-oxoadipate pathway appears to have evolved by vertical descent combined with multiple losses, the gentisate pathway shows a striking pattern suggestive of horizontal gene transfer to the evolutionarily distant Mucorales.
Databáze: Directory of Open Access Journals