Popis: |
In this study, a current-equalization technology utilizing a variable-capacitance technique for a multiphase inductor–inductor–capacitor (LLC) converter is studied. Accordingly, the proposed method involves adjusting the resonant capacitance of the LLC resonant converter to balance the currents between phases. This is achieved primarily by biasing ferroelectric multilayer ceramic capacitors (MLCCs) through a step-down circuit and a common-mode bias structure. These ferroelectric MLCCs serve as the resonant elements, allowing for variable capacitance by leveraging capacitance sensitivity to their trans voltages. This approach provides additional control flexibility to the resonant circuit. Furthermore, since each phase operates independently, the circuit can be scaled to accommodate any number of phases. Moreover, all switches in the circuit have zero-voltage switching (ZVS) turn-on, minimizing switching losses. This study initially analyzes and evaluates the proposed common-mode bias variable capacitance technique and the corresponding operational principles. Subsequently, a two-phase LLC experimental circuit based on a field-programmable gate array (FPGA) digital controller is utilized to assess current equalization and efficiency. That is to say, this experimentation aims to validate the effectiveness of the current-equalization variable-capacitance technique in an LLC resonant converter. |