Popis: |
Background: Heart rate variability (HRV) is a non-invasive marker of autonomic nervous system function that is based on the analysis of length differences between subsequent RR intervals of the electrocardiogram. The aim of this systematic review was to assess the current knowledge gap in the utility of HRV parameters and their value as predictors of the acute stroke course.Methods: A systematic review was performed in accordance with the PRISMA guidelines. Relevant articles published between 1 January 2016 and 1 November 2022 available in the PubMed, Web of Science, Scopus, and Cochrane Library databases were obtained using a systematic search strategy. The following keywords were used to screen the publications: “heart rate variability” AND/OR “HRV” AND “stroke.” The eligibility criteria that clearly identified and described outcomes and outlined restrictions on HRV measurement were pre-established by the authors. Articles assessing the relationship between HRV measured in the acute phase of stroke and at least one stroke outcome were considered. The observation period did not exceed 12 months. Studies that included patients with medical conditions influencing HRV with no established stroke etiology and non-human subjects were excluded from the analysis. To minimize the risk of bias, disagreements throughout the search and analysis were resolved by two independent supervisors.Results: Of the 1,305 records obtained from the systematic search based on keywords, 36 were included in the final review. These publications provided insight into the usability of linear and non-linear HRV analysis in predicting the course, complications, and mortality of stroke. Furthermore, some modern techniques, such as HRV biofeedback, for the improvement of cognition performance after a stroke are discussed.Discussion: The present study showed that HRV could be considered a promising biomarker of a stroke outcome and its complications. However, further research is needed to establish a methodology for appropriate quantification and interpretation of HRV-derived parameters. |