Mountain-pass-type solutions for Schrödinger equations in R2 with unbounded or vanishing potentials and critical exponential growth nonlinearities

Autor: Lin Xiaoyan, Tang Xianhua, Zhang Ning
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Advances in Nonlinear Analysis, Vol 13, Iss 1, Pp 1021-1031 (2024)
Druh dokumentu: article
ISSN: 2191-950X
DOI: 10.1515/anona-2023-0127
Popis: In this article, we consider the existence of solutions for nonlinear elliptic equations of the form −Δu+V(∣x∣)u=Q(∣x∣)f(u),x∈R2,-\Delta u+V\left(| x| )u=Q\left(| x| )f\left(u),\hspace{1em}x\in {{\mathbb{R}}}^{2}, where the nonlinear term f(s)f\left(s) has critical exponential growth which behaves like eαs2{e}^{\alpha {s}^{2}}, the radial potentials V,Q:R+→RV,Q:{{\mathbb{R}}}^{+}\to {\mathbb{R}} are unbounded, singular at the origin or decaying to zero at infinity. By combining the variational methods, Trudinger-Moser inequality, and some new approaches to estimate precisely the minimax level of the energy functional, we prove the existence of a Mountain-pass-type solution for the above problem under some weak assumptions.
Databáze: Directory of Open Access Journals