基于神经网络的未来3天Kp指数预报建模与可解释AI应用
Autor: | 王 听雨, 罗 冰显, 陈 艳红, 石 育榕, 王 晶晶, 刘 四清 |
---|---|
Jazyk: | English<br />Chinese |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Kongjian kexue xuebao, Vol 44, Pp 478-486 (2024) |
Druh dokumentu: | article |
ISSN: | 0254-6124 |
DOI: | 10.11728/cjss2024.03.2023-0107 |
Popis: | 当前业务中对未来3天Kp指数预报需求强烈. 但地磁暴中多参数耦合导致难以量化各预报因子对Kp值的贡献, 制约了预报精度提升. 本文构建了神经网络3天Kp指数预报模型, 并使用人工智能(AI)可解释性算法定量化各因子贡献. 结果显示, 行星际磁场南向分量在提前3 h对Kp指数的贡献为37.15%, 为主要因子, 说明模型能捕捉符合物理特征的主要预报因子. Kp指数历史特征贡献随提前量逐渐增加, 提前3天总体贡献占68.06%, 验证了对冕洞高速流引起的地磁暴事件的预报能力. 对2015和2017年特大地磁暴进行贡献分析, 模型准确捕捉了地磁暴多参数耦合的复杂特性. 研究表明, 可解释AI算法在一定程度上能定量化各预报因子对Kp指数的预报贡献, 有助于改进未来3天Kp指数AI预报模型. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |