Spectrum curves for a discrete Sturm–Liouville problem with one integral boundary condition
Autor: | Kristina Bingelė, Agnė Bankauskienė, Artūras Štikonas |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Nonlinear Analysis, Vol 24, Iss 5 (2019) |
Druh dokumentu: | article |
ISSN: | 1392-5113 2335-8963 71331239 |
DOI: | 10.15388/NA.2019.5.5 |
Popis: | This paper presents new results on the spectrum on complex plane for discrete Sturm–Liouville problem with one integral type nonlocal boundary condition depending on three parameters: γ, ξ1 and ξ2. The integral condition is approximated by the trapezoidal rule. The dependence on parameter γ is investigated by using characteristic function method and analysing spectrum curves which gives qualitative view of the spectrum for fixed ξ1 = m1 / n and ξ2 = m2 / n, where n is discretisation parameter. Some properties of the spectrum curves are formulated and illustrated in figures for various ξ1 and ξ2. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |