Targeting ferroptosis: A novel therapeutic strategy for the treatment of mitochondrial disease-related epilepsy.

Autor: Amanda H Kahn-Kirby, Akiko Amagata, Celine I Maeder, Janet J Mei, Steve Sideris, Yuko Kosaka, Andrew Hinman, Stephanie A Malone, Joel J Bruegger, Leslie Wang, Virna Kim, William D Shrader, Kevin G Hoff, Joey C Latham, Euan A Ashley, Matthew T Wheeler, Enrico Bertini, Rosalba Carrozzo, Diego Martinelli, Carlo Dionisi-Vici, Kimberly A Chapman, Gregory M Enns, William Gahl, Lynne Wolfe, Russell P Saneto, Simon C Johnson, Jeffrey K Trimmer, Matthew B Klein, Charles R Holst
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: PLoS ONE, Vol 14, Iss 3, p e0214250 (2019)
Druh dokumentu: article
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0214250
Popis: BACKGROUND:Mitochondrial disease is a family of genetic disorders characterized by defects in the generation and regulation of energy. Epilepsy is a common symptom of mitochondrial disease, and in the vast majority of cases, refractory to commonly used antiepileptic drugs. Ferroptosis is a recently-described form of iron- and lipid-dependent regulated cell death associated with glutathione depletion and production of lipid peroxides by lipoxygenase enzymes. Activation of the ferroptosis pathway has been implicated in a growing number of disorders, including epilepsy. Given that ferroptosis is regulated by balancing the activities of glutathione peroxidase-4 (GPX4) and 15-lipoxygenase (15-LO), targeting these enzymes may provide a rational therapeutic strategy to modulate seizure. The clinical-stage therapeutic vatiquinone (EPI-743, α-tocotrienol quinone) was reported to reduce seizure frequency and associated morbidity in children with the mitochondrial disorder pontocerebellar hypoplasia type 6. We sought to elucidate the molecular mechanism of EPI-743 and explore the potential of targeting 15-LO to treat additional mitochondrial disease-associated epilepsies. METHODS:Primary fibroblasts and B-lymphocytes derived from patients with mitochondrial disease-associated epilepsy were cultured under standardized conditions. Ferroptosis was induced by treatment with the irreversible GPX4 inhibitor RSL3 or a combination of pharmacological glutathione depletion and excess iron. EPI-743 was co-administered and endpoints, including cell viability and 15-LO-dependent lipid oxidation, were measured. RESULTS:EPI-743 potently prevented ferroptosis in patient cells representing five distinct pediatric disease syndromes with associated epilepsy. Cytoprotection was preceded by a dose-dependent decrease in general lipid oxidation and the specific 15-LO product 15-hydroxyeicosatetraenoic acid (15-HETE). CONCLUSIONS:These findings support the continued clinical evaluation of EPI-743 as a therapeutic agent for PCH6 and other mitochondrial diseases with associated epilepsy.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje