A systematic review of federated learning applications for biomedical data

Autor: Matthew G. Crowson, Dana Moukheiber, Aldo Robles Arévalo, Barbara D. Lam, Sreekar Mantena, Aakanksha Rana, Deborah Goss, David W. Bates, Leo Anthony Celi
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: PLOS Digital Health, Vol 1, Iss 5 (2022)
Druh dokumentu: article
ISSN: 2767-3170
Popis: Objectives Federated learning (FL) allows multiple institutions to collaboratively develop a machine learning algorithm without sharing their data. Organizations instead share model parameters only, allowing them to benefit from a model built with a larger dataset while maintaining the privacy of their own data. We conducted a systematic review to evaluate the current state of FL in healthcare and discuss the limitations and promise of this technology. Methods We conducted a literature search using PRISMA guidelines. At least two reviewers assessed each study for eligibility and extracted a predetermined set of data. The quality of each study was determined using the TRIPOD guideline and PROBAST tool. Results 13 studies were included in the full systematic review. Most were in the field of oncology (6 of 13; 46.1%), followed by radiology (5 of 13; 38.5%). The majority evaluated imaging results, performed a binary classification prediction task via offline learning (n = 12; 92.3%), and used a centralized topology, aggregation server workflow (n = 10; 76.9%). Most studies were compliant with the major reporting requirements of the TRIPOD guidelines. In all, 6 of 13 (46.2%) of studies were judged at high risk of bias using the PROBAST tool and only 5 studies used publicly available data. Conclusion Federated learning is a growing field in machine learning with many promising uses in healthcare. Few studies have been published to date. Our evaluation found that investigators can do more to address the risk of bias and increase transparency by adding steps for data homogeneity or sharing required metadata and code. Author summary Interest in machine learning as applied to challenges in medicine has seen an exponential rise over the past decade. A key issue in developing machine learning models is the availability of sufficient high-quality data. Another related issue is a requirement to validate a locally trained model on data from external sources. However, sharing sensitive biomedical and clinical data across different hospitals and research teams can be challenging due to concerns with data privacy and data stewardship. These issues have led to innovative new approaches for collaboratively training machine learning models without sharing raw data. One such method, termed ‘federated learning,’ enables investigators from different institutions to combine efforts by training a model locally on their own data, and sharing the parameters of the model with others to generate a central model. Here, we systematically review reports of successful deployments of federated learning applied to research problems involving biomedical data. We found that federated learning links research teams around the world and has been applied to modelling in such as oncology and radiology. Based on the trends we observed in the studies reviewed in our paper, we observe there are opportunities to expand and improve this innovative approach so global teams can continue to produce and validate high quality machine learning models.
Databáze: Directory of Open Access Journals