Autor: |
Wanyu Zhao, Min Guo, Zhijun Zuo, Xiaoli Zhao, Huanglin Dou, Yijie Zhang, Shiying Li, Zichen Wu, Yayun Shi, Zifeng Ma, Xiaowei Yang |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Engineering, Vol 11, Iss , Pp 87-94 (2022) |
Druh dokumentu: |
article |
ISSN: |
2095-8099 |
DOI: |
10.1016/j.eng.2021.08.028 |
Popis: |
Sodium (Na) metal batteries with a high volumetric energy density that can be operated at high rates are highly desirable. However, an uneven Na-ion migration in bulk Na anodes leads to localized deposition/dissolution of sodium during high-rate plating/stripping behaviors, followed by severe dendrite growth and loose stacking. Herein, we engineer the Na hybrid anode with sodiophilic Na3Bi-penetration to develop the abundant phase-boundary ionic transport channels. Compared to intrinsic Na, the reduced adsorption energy and ion-diffusion barrier on Na3Bi ensure even Na+ nucleation and rapid Na+ migration within the hybrid electrode, leading to uniform deposition and dissolution at high current densities. Furthermore, the bismuthide enables compact Na deposition within the sodiophilic framework during cycling, thus favoring a high volumetric capacity. Consequently, the obtained anode was endowed with a high current density (up to 5 mA∙cm−2), high areal capacity (up to 5 mA∙h∙cm−2), and long-term cycling stability (up to 2800 h at 2 mA∙cm−2). |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|