Popis: |
Abstract Occupation ratio and fatty infiltration are important parameters for evaluating patients with rotator cuff tears. We analyzed the occupation ratio using a deep-learning framework and studied the fatty infiltration of the supraspinatus muscle using an automated region-based Otsu thresholding technique. To calculate the amount of fatty infiltration of the supraspinatus muscle using an automated region-based Otsu thresholding technique. The mean Dice similarity coefficient, accuracy, sensitivity, specificity, and relative area difference for the segmented lesion, measuring the similarity of clinician assessment and that of a deep neural network, were 0.97, 99.84, 96.89, 99.92, and 0.07, respectively, for the supraspinatus fossa and 0.94, 99.89, 93.34, 99.95, and 2.03, respectively, for the supraspinatus muscle. The fatty infiltration measure using the Otsu thresholding method significantly differed among the Goutallier grades (Grade 0; 0.06, Grade 1; 4.68, Grade 2; 20.10, Grade 3; 42.86, Grade 4; 55.79, p |