Autor: |
Fredrik Skaug Fadnes, Mohsen Assadi |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Energies, Vol 17, Iss 19, p 4832 (2024) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en17194832 |
Popis: |
The performance of heat pump systems for heating and cooling heavily relies on the thermal conditions of their reservoirs. This study introduces a novel thermal reservoir, detailing a 2017 project where the Municipality of Stavanger installed a heat exchanger system on the wall of a main wastewater tunnel beneath the city center. It provides a comprehensive account of the system’s design, installation, and performance, and presents an Artificial Neural Network (ANN) model that predicts heat pump capacity, electricity consumption, and outlet temperature across seasonal variations in wastewater temperatures. By integrating domain knowledge with the ANN, this study demonstrates the model’s capability to detect anomalies in heat pump operations effectively. The network also confirms the consistent performance of the heat exchangers from 2020 to 2024, indicating minimal fouling impacts. This study establishes wastewater heat exchangers as a safe, effective, and virtually maintenance-free solution for heat extraction and rejection. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|