Popis: |
Background: Pre-eclampsia (PE) can result in severe damage to maternal and fetal health. It has been reported that gut microbiota (GM) had important roles in regulating the metabolic and inflammatory responses of the mother. However, investigations on GM in PE are rare. Objective: The objective of the present study was to investigate the changes of GM in PE and how to alter the GM composition in PE by dietary or dietary supplements. Design: We analyzed the composition changes in GM as well as the relationship between bacteria of different genera and clinical indices by amplifying the V4 region of the 16S ribosomal RNA gene in 12 PE patients and eight healthy pregnant women in East China. Results: In the PE group, the Observed Species Index was lower than that in the control group, indicating that the α-diversity of the microbiome in the PE group decreased. At phylum, family, and genus levels, the relative abundance of different bacteria in PE patients displayed substantial differences to those from healthy women. We noted a decreased abundance of bacteria of the phylum Actinobacteria (P = 0.042), decreased abundance of bacteria of the family Bifidobacteriaceae (P = 0.039), increased abundance of bacteria of the genus Blautia (P = 0.026) and Ruminococcus (P = 0.048), and decreased abundance of bacteria of the genus Bifidobacterium (P = 0.038). Among three enriched genera, bacteria of the genus Bifidobacterium showed a negative correlation with the systolic blood pressure (SBP), diastolic blood pressure (DBP), and dyslipidemia, which involved glucose metabolism, lipid metabolism, and the oxidative-phosphorylation pathway. The increased abundance of bacteria of the genera Blautia and Ruminococcus was positively correlated with obesity and dyslipidemia, which involved lipid metabolism, glycosyltransferases, biotin metabolism, and the oxidative-phosphorylation pathways. Moreover, women in the PE group ate more than women in the control group, so fetuses were more prone to overnutrition in the PE group. Conclusion: There is a potential for GM dysbiosis in PE patients, and they could be prone to suffer from metabolic syndrome. We speculate that alterations in the abundance of bacteria of certain genera (e.g. increased abundance of Blautia and Ruminococcus, and decreased abundance of Bifidobacterium) were associated with PE development to some degree. Our data could help to monitor the health of pregnant women and may be helpful for preventing and assisting treatment of PE by increasing dietary fiber or probiotics supplement. |