Autor: |
Thomas Bieske, Robert D. Freeman |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Electronic Journal of Differential Equations, Vol 2019, Iss 35,, Pp 1-13 (2019) |
Druh dokumentu: |
article |
ISSN: |
1072-6691 |
Popis: |
We find the fundamental solution to the p-Laplace equation in a class of Hormander vector fields that generate neither a Carnot group nor a Grushin-type space. The singularity occurs at the sub-Riemannian points, which naturally corresponds to finding the fundamental solution of a generalized operator in Euclidean space. We then extend these solutions to a generalization of the p-Laplace equation and use these solutions to find infinite harmonic functions and their generalizations. We also compute the capacity of annuli centered at the singularity. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|