Distributed gradient descent method with edge‐based event‐driven communication for non‐convex optimization
Autor: | T. Adachi, N. Hayashi, S. Takai |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | IET Control Theory & Applications, Vol 15, Iss 12, Pp 1588-1598 (2021) |
Druh dokumentu: | article |
ISSN: | 1751-8652 1751-8644 |
DOI: | 10.1049/cth2.12127 |
Popis: | Abstract This paper considers an event‐driven distributed non‐convex optimization algorithm for a multi‐agent system, where each agent has a non‐convex cost function. The goal of the multi‐agent system is to minimize the global objective function, which is the sum of these local cost functions, in a distributed manner. To this end, each agent updates the own state by a consensus‐based gradient descent algorithm. The local information exchange among neighbor agents is carried out with an event‐triggered scheme to achieve consensus with less inter‐agent communication. Convergence to a critical point of the objective function and the validity of the proposed algorithm in numerical examples are shown. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |