Existence of Positive Solutions and Asymptotic Behavior for Evolutionary q(x)-Laplacian Equations

Autor: Aboubacar Marcos, Ambroise Soglo
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Discrete Dynamics in Nature and Society, Vol 2020 (2020)
Druh dokumentu: article
ISSN: 1026-0226
1607-887X
DOI: 10.1155/2020/9756162
Popis: In this paper, we extend the variational method of M. Agueh to a large class of parabolic equations involving q(x)-Laplacian parabolic equation ∂ρt,x/∂t=divxρt,x∇xG′ρ+Vqx−2∇xG′ρ+V. The potential V is not necessarily smooth but belongs to a Sobolev space W1,∞Ω. Given the initial datum ρ0 as a probability density on Ω, we use a descent algorithm in the probability space to discretize the q(x)-Laplacian parabolic equation in time. Then, we use compact embedding W1,q.Ω↪↪Lq.Ω established by Fan and Zhao to study the convergence of our algorithm to a weak solution of the q(x)-Laplacian parabolic equation. Finally, we establish the convergence of solutions of the q(x)-Laplacian parabolic equation to equilibrium in the p(.)-variable exponent Wasserstein space.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje