Boscovich Fuzzy Regression Line

Autor: Pavel Škrabánek, Jaroslav Marek, Alena Pozdílková
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Mathematics, Vol 9, Iss 6, p 685 (2021)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math9060685
Popis: We introduce a new fuzzy linear regression method. The method is capable of approximating fuzzy relationships between an independent and a dependent variable. The independent and dependent variables are expected to be a real value and triangular fuzzy numbers, respectively. We demonstrate on twenty datasets that the method is reliable, and it is less sensitive to outliers, compare with possibilistic-based fuzzy regression methods. Unlike other commonly used fuzzy regression methods, the presented method is simple for implementation and it has linear time-complexity. The method guarantees non-negativity of model parameter spreads.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje