Autor: |
Pavel Škrabánek, Jaroslav Marek, Alena Pozdílková |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 9, Iss 6, p 685 (2021) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math9060685 |
Popis: |
We introduce a new fuzzy linear regression method. The method is capable of approximating fuzzy relationships between an independent and a dependent variable. The independent and dependent variables are expected to be a real value and triangular fuzzy numbers, respectively. We demonstrate on twenty datasets that the method is reliable, and it is less sensitive to outliers, compare with possibilistic-based fuzzy regression methods. Unlike other commonly used fuzzy regression methods, the presented method is simple for implementation and it has linear time-complexity. The method guarantees non-negativity of model parameter spreads. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|