Autor: |
Nuwan Jaliyagoda, Sandali Lokuge, P M P C Gunathilake, K S P Amaratunga, W A P Weerakkody, Pradeepa C G Bandaranayake, Asitha U Bandaranayake |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
PLoS ONE, Vol 18, Iss 5, p e0278440 (2023) |
Druh dokumentu: |
article |
ISSN: |
1932-6203 |
DOI: |
10.1371/journal.pone.0278440 |
Popis: |
Internet of things (IoT) applications in smart agricultural systems vary from monitoring climate conditions, automating irrigation systems, greenhouse automation, crop monitoring and management, and crop prediction, up to end-to-end autonomous farm management systems. One of the main challenges to the advancement of IoT systems for the agricultural domain is the lack of training data under operational environmental conditions. Most of the current designs are based on simulations and artificially generated data. Therefore, the essential first step is studying and understanding the finely tuned and highly sensitive mechanism plants have developed to sense, respond, and adapt to changes in their environment, and their behavior under field and controlled systems. Therefore, this study was designed to achieve two specific objectives; to develop low-cost IoT components from basic building blocks, and to study the performance of the developed systems, and generate real-time experimental data, with and without plants. Low-cost IoT devices developed locally were used to convert existing basic polytunnels to semi-controlled and monitoring-only polytunnels. Their performances were analyzed and compared with each other based on several matrices while maintaining the planted tomato variety and agronomic practices similar. The developed system performed as expected suggesting the possibility of commercial applications and research purposes. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|