Laplacian spectrum of the unit graph associated to the ring of integers modulo pq

Autor: Wafaa Fakieh, Amal Alsaluli, Hanaa Alashwali
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: AIMS Mathematics, Vol 9, Iss 2, Pp 4098-4108 (2024)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2024200?viewType=HTML
Popis: Let $ R $ be a ring and $ U(R) $ be the set of unit elements of $ R $. The unit graph $ G(R) $ of $ R $ is the graph whose vertices are all the elements of $ R $, defining distinct vertices $ x $ and $ y $ to be adjacent if and only if $ x + y \in U(R) $. The Laplacian spectrum of $ G(\mathbb{Z}_n) $ was studied when $ n = p^{m} $, where $ p $ is a prime and $ m $ is a positive integer. Consequently, in this paper, we study the Laplacian spectrum of $ G(\mathbb{Z}_n) $, for $ n = p_1p_2...p_k $, where $ p_i $ are distinct primes and $ i = 1, 2, ..., k $.
Databáze: Directory of Open Access Journals