LAQUA: a LAndsat water QUality retrieval tool for east African lakes

Autor: Aidan Byrne, Davide Lomeo, Winnie Owoko, Christopher Mulanda Aura, Kobingi Nyakeya, Cyprian Odoli, James Mugo, Conland Barongo, Julius Kiplagat, Naftaly Mwirigi, Sean Avery, Michael A. Chadwick, Ken Norris, Emma J. Tebbs, on behalf of the NSF-IRES Lake Victoria Research Consortium
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Remote Sensing, Vol 16, Iss 16, p 2903 (2024)
Druh dokumentu: article
ISSN: 2072-4292
DOI: 10.3390/rs16162903
Popis: East African lakes support the food and water security of millions of people. Yet, a lack of continuous long-term water quality data for these waterbodies impedes their sustainable management. While satellite-based water quality retrieval methods have been developed for lakes globally, African lakes are typically underrepresented in training data, limiting the applicability of existing methods to the region. Hence, this study aimed to (1) assess the accuracy of existing and newly developed water quality band algorithms for East African lakes and (2) make satellite-derived water quality information easily accessible through a Google Earth Engine application (app), named LAndsat water QUality retrieval tool for east African lakes (LAQUA). We collated a dataset of existing and newly collected in situ surface water quality samples from seven lakes to develop and test Landsat water quality retrieval models. Twenty-one published algorithms were evaluated and compared with newly developed linear and quadratic regression models, to determine the most suitable Landsat band algorithms for chlorophyll-a, total suspended solids (TSS), and Secchi disk depth (SDD) for East African lakes. The three-band algorithm, parameterised using data for East African lakes, proved the most suitable for chlorophyll-a retrieval (R2 = 0.717, p < 0.001, RMSE = 22.917 μg/L), a novel index developed in this study, the Modified Suspended Matter Index (MSMI), was the most accurate for TSS retrieval (R2 = 0.822, p < 0.001, RMSE = 9.006 mg/L), and an existing global model was the most accurate for SDD estimation (R2 = 0.933, p < 0.001, RMSE = 0.073 m). The LAQUA app we developed provides easy access to the best performing retrieval models, facilitating the use of water quality information for management and evidence-informed policy making for East African lakes.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje