Popis: |
In this study, the primary objective is to analyze fatigue crack propagation in linear elastic fracture mechanics using the SMART crack growth module in the ANSYS Workbench, employing the finite element method. The investigation encompasses several crucial steps, including the computation of stress intensity factors (SIFs), determination of crack paths, and estimation of remaining fatigue life. To thoroughly understand crack behavior under various loading conditions, a wide range of stress ratios, ranging from R = 0.1 to R = 0.9, is considered. The research findings highlight the significant impact of the stress ratio on the equivalent range of SIFs, fatigue life cycles, and distribution of deformation. As the stress ratio increases, there is a consistent reduction in the magnitude of the equivalent range of stress intensity factor. Additionally, a reciprocal relationship is observed between the level of X-directional deformation and the number of cycles to failure. This indicates that components experiencing lower levels of deformation tend to exhibit longer fatigue life cycles, as evidenced by the specimens studied. To verify the findings, the computational results are matched with the crack paths and fatigue life data obtained from both experimental and numerical sources available in the open literature. The extensive comparison carried out reveals a remarkable level of agreement between the computed outcomes and both the experimental and numerical results. |