MASANet: Multi-Angle Self-Attention Network for Semantic Segmentation of Remote Sensing Images

Autor: Fuping Zeng, Bin Yang, Mengci Zhao, Ying Xing, Yiran Ma
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Tehnički Vjesnik, Vol 29, Iss 5, Pp 1567-1575 (2022)
Druh dokumentu: article
ISSN: 1330-3651
1848-6339
20220421
DOI: 10.17559/TV-20220421142959
Popis: As an important research direction in the field of pattern recognition, semantic segmentation has become an important method for remote sensing image information extraction. However, due to the loss of global context information, the effect of semantic segmentation is still incomplete or misclassified. In this paper, we propose a multi-angle self-attention network (MASANet) to solve this problem. Specifically, we design a multi-angle self-attention module to enhance global context information, which uses three angles to enhance features and takes the obtained three features as the inputs of self-attention to further extract the global dependencies of features. In addition, atrous spatial pyramid pooling (ASPP) and global average pooling (GAP) further improve the overall performance. Finally, we concatenate the feature maps of different scales obtained in the feature extraction stage with the corresponding feature maps output by ASPP to further extract multi-scale features. The experimental results show that MASANet achieves good segmentation performance on high-resolution remote sensing images. In addition, the comparative experimental results show that MASANet is superior to some state-of-the-art models in terms of some widely used evaluation criteria.
Databáze: Directory of Open Access Journals