Maximizing and evaluating the impact of test-trace-isolate programs: A modeling study.
Autor: | Kyra H Grantz, Elizabeth C Lee, Lucy D'Agostino McGowan, Kyu Han Lee, C Jessica E Metcalf, Emily S Gurley, Justin Lessler |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | PLoS Medicine, Vol 18, Iss 4, p e1003585 (2021) |
Druh dokumentu: | article |
ISSN: | 1549-1277 1549-1676 |
DOI: | 10.1371/journal.pmed.1003585 |
Popis: | BackgroundTest-trace-isolate programs are an essential part of coronavirus disease 2019 (COVID-19) control that offer a more targeted approach than many other nonpharmaceutical interventions. Effective use of such programs requires methods to estimate their current and anticipated impact.Methods and findingsWe present a mathematical modeling framework to evaluate the expected reductions in the reproductive number, R, from test-trace-isolate programs. This framework is implemented in a publicly available R package and an online application. We evaluated the effects of completeness in case detection and contact tracing and speed of isolation and quarantine using parameters consistent with COVID-19 transmission (R0: 2.5, generation time: 6.5 days). We show that R is most sensitive to changes in the proportion of cases detected in almost all scenarios, and other metrics have a reduced impact when case detection levels are low (ConclusionsEffective test-trace-isolate programs first need to be strong in the "test" component, as case detection underlies all other program activities. Even moderately effective test-trace-isolate programs are an important tool for controlling the COVID-19 pandemic and can alleviate the need for more restrictive social distancing measures. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |