Autor: |
Prashasthi V. Rai, Ramith Ramu, P. Akhileshwari, Sudharshan Prabhu, Nupura Manish Prabhune, P. V. Deepthi, P. T. Anjana, D. Ganavi, A. M. Vijesh, Khang Wen Goh, Mohammad Z. Ahmed, Vasantha Kumar |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Molecules, Vol 29, Iss 23, p 5599 (2024) |
Druh dokumentu: |
article |
ISSN: |
1420-3049 |
DOI: |
10.3390/molecules29235599 |
Popis: |
In search of novel antidiabetic agents, we synthesized a new series of chalcones with benzimidazole scaffolds by an efficient ‘one-pot’ nitro reductive cyclization method and evaluated their α-glucosidase and α-amylase inhibition studies. The ‘one-pot’ nitro reductive cyclization method offered a simple route for the preparation of benzimidazoles with excellent yield and higher purity compared to the other conventional acid- or base-catalyzed cyclization methods. 1H, 13C NMR, IR, and mass spectrum data were used to characterize the compounds. Single-crystal XRD data confirmed the 3D structure of compound 7c, which was crystalized in the P1¯ space group of the triclinic crystal system. Hirshfeld surface analysis validates the presence of O-H..O, O-H…N, and C-H…O intermolecular hydrogen bonds. From the DFT calculations, the energy gap between the frontier molecular orbitals in 7c was found to be 3.791 eV. From the series, compound 7l emerged as a potent antidiabetic agent with IC50 = 22.45 ± 0.36 µg/mL and 20.47 ± 0.60 µg/mL against α-glucosidase and α-amylase enzymes, respectively. The in silico molecular docking studies revealed that compound 7l has strong binding interactions with α-glucosidase and α-amylase proteins. Molecular dynamics studies also revealed the stability of compound 7l with α-glucosidase and α-amylase proteins. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|