Certain Identities Involving the General Kampé de Fériet Function and Srivastava’s General Triple Hypergeometric Series

Autor: Mohd Idris Qureshi, Junesang Choi, Mohd Shaid Baboo
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Symmetry, Vol 14, Iss 12, p 2502 (2022)
Druh dokumentu: article
ISSN: 14122502
2073-8994
DOI: 10.3390/sym14122502
Popis: Due to the great success of hypergeometric functions of one variable, a number of hypergeometric functions of two or more variables have been introduced and explored. Among them, the Kampé de Fériet function and its generalizations have been actively researched and applied. The aim of this paper is to provide certain reduction, transformation and summation formulae for the general Kampé de Fériet function and Srivastava’s general triple hypergeometric series, where the parameters and the variables are suitably specified. The identities presented in the theorems and additional comparable outcomes are hoped to be supplied by the use of computer-aid programs, for example, Mathematica. Symmetry occurs naturally in p+1Fp, the Kampé de Fériet function and the Srivastava’s function F(3)[x,y,z], which are three of the most important functions discussed in this study.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje