Popis: |
Fernando Rodríguez-Serrano,1,* Nuria Mut-Salud,1,* Teresa Cruz-Bustos,2 Mercedes Gomez-Samblas,2 Esther Carrasco,1 Jose Manuel Garrido,3 F Javier López-Jaramillo,4 Francisco Santoyo-Gonzalez,4 Antonio Osuna2 1Institute of Biopathology and Regenerative Medicine, 2Molecular Biochemistry and Parasitology Research Group, Department of Parasitology, Faculty of Sciences, Institute of Biotechnology, University of Granada, 3Department of Cardiovascular Surgery, Virgen de las Nieves Hospital, 4Department of Organic Chemistry, Faculty of Sciences, Institute of Biotechnology, University of Granada, Granada, Spain *These authors contributed equally to this work Background: Around 20%–30% of breast cancers overexpress the proto-oncogene human epidermal growth receptor 2 (HER2), and they are characterized by being very invasive. Therefore, many current studies are focused on testing new therapies against tumors that overexpress this receptor. In particular, there exists major interest in new strategies to fight breast cancer resistant to trastuzumab (Tmab), a humanized antibody that binds specifically to HER2 interfering with its mitogenic signaling. Our team has previously developed immunostimulating complexes (ISCOMs) as nanocapsules functionalized with lipid vinyl sulfones, which can incorporate protein A and bind to G immunoglobulins that makes them very flexible nanocarriers.Methods and results: The aim of this in vitro study was to synthesize and evaluate a drug delivery system based on protein A-functionalized ISCOMs to target HER2-overexpressing cells. We describe the preparation of ISCOMs, the loading with the drugs doxorubicin and paclitaxel, the binding of ISCOMs to alkyl vinyl sulfone-protein A, the coupling of Tmab, and the evaluation in both HER2-overexpressing breast cancer cells (HCC1954) and non-overexpressing cells (MCF-7) by flow cytometry and fluorescence microscopy. Results show that the uptake is dependent on the level of overexpression of HER2, and the analysis of the cell viability reveals that targeted drugs are selective toward HCC1954, whereas MCF-7 cells remain unaffected.Conclusion: Protein A-functionalized ISCOMs are versatile carriers that can be coupled to antibodies that act as targeting agents to deliver drugs. When coupling to Tmab and loading with paclitaxel or doxorubicin, they become efficient vehicles for the selective delivery of the drug to Tmab-resistant HER2-overexpressing breast cancer cells. These nanoparticles may pave the way for the development of novel therapies for poor prognosis resistant patients. Keywords: targeted drug delivery, doxorubicin, HER2, nanoparticle, paclitaxel, protein A, trastuzumab |