Ensemble of CNN models for classification of groundnut plant leaf disease detection

Autor: Aishwarya M.P., Padmanabha Reddy
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Smart Agricultural Technology, Vol 6, Iss , Pp 100362- (2023)
Druh dokumentu: article
ISSN: 2772-3755
DOI: 10.1016/j.atech.2023.100362
Popis: Plant diseases pose a significant threat to the world's nutrition and can have severe consequences for smallholder farmers who rely on a thriving groundnut crop for their livelihoods. Therefore, it is crucial to create an algorithm for early automated diagnosis of plant diseases. Soa comprehensive dataset of groundnut leaf images was created in collaboration with a pathologist, facilitating the automated identification of plant diseases. The field of image classification has found CNN to be quite effective. In this study, we create such a method for disease identification and classification by utilizing a tri-CNN architecture consisting of DenseNet169, Inception, and Xception —that have been pre-trained on the ImageNet dataset using two created non-linear equations on decision scores from the before mentioned base learners,the outlined ensemble methodology generates ultimate predictions for the test samples by incorporating the scores of four conventional metrics for evaluation, namely recall, precision, accuracy, and f1-score, obtained from the base learners. Hence mentioned CNN customized models are used to train our model for obtaining better results. The proposed approach evaluated on real world groundnut leaf dataset. The model that was put forth attained accuracy rates of 98.46 %.
Databáze: Directory of Open Access Journals