A New Optimal Family of Schröder’s Method for Multiple Zeros

Autor: Ramandeep Behl, Arwa Jeza Alsolami, Bruno Antonio Pansera, Waleed M. Al-Hamdan, Mehdi Salimi, Massimiliano Ferrara
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Mathematics, Vol 7, Iss 11, p 1076 (2019)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math7111076
Popis: Here, we suggest a high-order optimal variant/modification of Schröder’s method for obtaining the multiple zeros of nonlinear uni-variate functions. Based on quadratically convergent Schröder’s method, we derive the new family of fourth -order multi-point methods having optimal convergence order. Additionally, we discuss the theoretical convergence order and the properties of the new scheme. The main finding of the present work is that one can develop several new and some classical existing methods by adjusting one of the parameters. Numerical results are given to illustrate the execution of our multi-point methods. We observed that our schemes are equally competent to other existing methods.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje