Numerical Simulation of Dispersed Particle-Blood Flow in the Stenosed Coronary Arteries

Autor: Mongkol Kaewbumrung, Somsak Orankitjaroen, Pichit Boonkrong, Buraskorn Nuntadilok, Benchawan Wiwatanapataphee
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: International Journal of Differential Equations, Vol 2018 (2018)
Druh dokumentu: article
ISSN: 1687-9643
1687-9651
34465316
DOI: 10.1155/2018/2593425
Popis: A mathematical model of dispersed bioparticle-blood flow through the stenosed coronary artery under the pulsatile boundary conditions is proposed. Blood is assumed to be an incompressible non-Newtonian fluid and its flow is considered as turbulence described by the Reynolds-averaged Navier-Stokes equations. Bioparticles are assumed to be spherical shape with the same density as blood, and their translation and rotational motions are governed by Newtonian equations. Impact of particle movement on the blood velocity, the pressure distribution, and the wall shear stress distribution in three different severity degrees of stenosis including 25%, 50%, and 75% are investigated through the numerical simulation using ANSYS 18.2. Increasing degree of stenosis severity results in higher values of the pressure drop and wall shear stresses. The higher level of bioparticle motion directly varies with the pressure drop and wall shear stress. The area of coronary artery with higher density of bioparticles also presents the higher wall shear stress.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje