Autor: |
Fuxin Xue, Xitong Ren, Chaoying Kong, Jianfeng Wang, Linlin Liu, Junli Hu, Na Shen, Zhaohui Tang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Materials Today Bio, Vol 28, Iss , Pp 101239- (2024) |
Druh dokumentu: |
article |
ISSN: |
2590-0064 |
DOI: |
10.1016/j.mtbio.2024.101239 |
Popis: |
Immune checkpoint blockade (ICB) therapy, particularly PD1/PDL1 inhibition, has demonstrated success in bolstering durable responses in patients. However, the response rate remains below 30 %. In this study, we developed a polymeric bispecific antibody (BsAb) targeting PD1/PDL1 to enhance ICB therapy. Specifically, poly(L-glutamic acid) (PGLU) was conjugated with a double cyclic Fc binding peptide, Fc-III-4C, through condensation reactions between the -COOH group of PGLU and the -NH2 group of Fc-III-4C. This conjugate was then mixed with αPD1 and αPDL1 monoclonal antibodies (mAbs) in an aqueous solution. Mechanistically, the PD1/PDL1 BsAb (BsAbαPD1+αPDL1) acts as a bridge between tumor cells and CD8+ T cells, continuously activating CD8+ T cells to a greater extent. This leads to significantly suppressed tumor growth and prolonged survival in a mouse model of colon cancer compared to treatment with either a single mAb or a mixture of free mAbs. The tumor suppression rate achieved by the BsAbαPD1+αPDL1 was 90.1 %, with a corresponding survival rate of 83.3 % after 48 days. Thus, this study underscores the effectiveness of the BsAbαPD1+αPDL1 as a synchronizing T cell engager and dual ICBs, offering theoretical guidance for clinical ICB therapy. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|