Autor: |
Guangyao Zheng, Bo Zang, Penghui Yang, Wenbo Zhang, Bin Li |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Remote Sensing, Vol 16, Iss 22, p 4204 (2024) |
Druh dokumentu: |
article |
ISSN: |
2072-4292 |
DOI: |
10.3390/rs16224204 |
Popis: |
Automatic modulation recognition (AMR) is widely employed in communication systems. However, under conditions of low signal-to-noise ratio (SNR), recent studies reveal limitations in achieving high AMR accuracy. In this work, we introduce a novel network architecture that leverages a transformer-inspired approach tailored for AMR, called Feature-Enhanced Transformer with skip-attention (FE-SKViT). This innovative design adeptly harnesses the advantages of translation variant convolution and the Transformer framework, handling intra-signal variance and small cross-signal variance to achieve enhanced recognition accuracy. Experimental results on RadioML2016.10a, RadioML2016.10b, and RML22 datasets demonstrate that the Feature-Enhanced Transformer with skip-attention (FE-SKViT) excels over other methods, particularly under low SNR conditions ranging from −4 to 6 dB. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|