Autor: |
Amir Kamel Rahimi, Oliver Pienaar, Moji Ghadimi, Oliver J Canfell, Jason D Pole, Sally Shrapnel, Anton H van der Vegt, Clair Sullivan |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Journal of Medical Internet Research, Vol 26, p e49655 (2024) |
Druh dokumentu: |
article |
ISSN: |
1438-8871 |
DOI: |
10.2196/49655 |
Popis: |
BackgroundEfforts are underway to capitalize on the computational power of the data collected in electronic medical records (EMRs) to achieve a learning health system (LHS). Artificial intelligence (AI) in health care has promised to improve clinical outcomes, and many researchers are developing AI algorithms on retrospective data sets. Integrating these algorithms with real-time EMR data is rare. There is a poor understanding of the current enablers and barriers to empower this shift from data set–based use to real-time implementation of AI in health systems. Exploring these factors holds promise for uncovering actionable insights toward the successful integration of AI into clinical workflows. ObjectiveThe first objective was to conduct a systematic literature review to identify the evidence of enablers and barriers regarding the real-world implementation of AI in hospital settings. The second objective was to map the identified enablers and barriers to a 3-horizon framework to enable the successful digital health transformation of hospitals to achieve an LHS. MethodsThe PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were adhered to. PubMed, Scopus, Web of Science, and IEEE Xplore were searched for studies published between January 2010 and January 2022. Articles with case studies and guidelines on the implementation of AI analytics in hospital settings using EMR data were included. We excluded studies conducted in primary and community care settings. Quality assessment of the identified papers was conducted using the Mixed Methods Appraisal Tool and ADAPTE frameworks. We coded evidence from the included studies that related to enablers of and barriers to AI implementation. The findings were mapped to the 3-horizon framework to provide a road map for hospitals to integrate AI analytics. ResultsOf the 1247 studies screened, 26 (2.09%) met the inclusion criteria. In total, 65% (17/26) of the studies implemented AI analytics for enhancing the care of hospitalized patients, whereas the remaining 35% (9/26) provided implementation guidelines. Of the final 26 papers, the quality of 21 (81%) was assessed as poor. A total of 28 enablers was identified; 8 (29%) were new in this study. A total of 18 barriers was identified; 5 (28%) were newly found. Most of these newly identified factors were related to information and technology. Actionable recommendations for the implementation of AI toward achieving an LHS were provided by mapping the findings to a 3-horizon framework. ConclusionsSignificant issues exist in implementing AI in health care. Shifting from validating data sets to working with live data is challenging. This review incorporated the identified enablers and barriers into a 3-horizon framework, offering actionable recommendations for implementing AI analytics to achieve an LHS. The findings of this study can assist hospitals in steering their strategic planning toward successful adoption of AI. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|