Infinitely many solutions for Schrödinger equations with Hardy potential and Berestycki-Lions conditions
Autor: | Zhou Shan |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Open Mathematics, Vol 22, Iss 1, Pp 347-375 (2024) |
Druh dokumentu: | article |
ISSN: | 2391-5455 |
DOI: | 10.1515/math-2023-0175 |
Popis: | In this article, we investigate the following Schrödinger equation: −Δu−μ∣x∣2u=g(u)inRN,-\Delta u-\frac{\mu }{{| x| }^{2}}u=g\left(u)\hspace{1em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{N}, where N≥3N\ge 3, μ∣x∣2\frac{\mu }{{| x| }^{2}} is called the Hardy potential and gg satisfies Berestycki-Lions conditions. If 0 |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |