Infinitely many solutions for Schrödinger equations with Hardy potential and Berestycki-Lions conditions

Autor: Zhou Shan
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Open Mathematics, Vol 22, Iss 1, Pp 347-375 (2024)
Druh dokumentu: article
ISSN: 2391-5455
DOI: 10.1515/math-2023-0175
Popis: In this article, we investigate the following Schrödinger equation: −Δu−μ∣x∣2u=g(u)inRN,-\Delta u-\frac{\mu }{{| x| }^{2}}u=g\left(u)\hspace{1em}{\rm{in}}\hspace{0.33em}{{\mathbb{R}}}^{N}, where N≥3N\ge 3, μ∣x∣2\frac{\mu }{{| x| }^{2}} is called the Hardy potential and gg satisfies Berestycki-Lions conditions. If 0
Databáze: Directory of Open Access Journals