Incorporation of black phosphorus nanosheets into poly(propylene fumarate) biodegradable bone cement to enhance bioactivity and osteogenesis

Autor: Jiahan Chen, Xiaoxia Huang, Jianghua Wang, Wen Chen, Yong Teng, Dongfeng Yin
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Journal of Orthopaedic Surgery and Research, Vol 19, Iss 1, Pp 1-14 (2024)
Druh dokumentu: article
ISSN: 1749-799X
DOI: 10.1186/s13018-024-04566-6
Popis: Abstract Background Injectable bone cement is commonly used in clinical orthopaedics to fill bone defects, treat vertebral compression fractures, and fix joint prostheses during joint replacement surgery. Poly(propylene fumarate) (PPF) has been proposed as a biodegradable and injectable alternative to polymethylmethacrylate (PMMA) bone cement. Recently, there has been considerable interest in two-dimensional (2D) black phosphorus nanomaterials (BPNSs) in the biomedical field due to their excellent photothermal and osteogenic properties. In this study, we investigated the biological and physicochemical qualities of BPNSs mixed with PPF bone cement created through thermal cross-linking. Methods PPF was prepared through a two-step process, and BPNSs were prepared via a liquid phase stripping method. BP/PPF was subsequently prepared through thermal cross-linking, and its characteristics were thoroughly analysed. The mechanical properties, cytocompatibility, osteogenic performance, degradation performance, photothermal performance, and in vivo toxicity of BP/PPF were evaluated. Results BP/PPF exhibited low cytotoxicity levels and mechanical properties similar to that of bone, whereas the inclusion of BPNSs promoted preosteoblast adherence, proliferation, and differentiation on the surface of the bone cement. Furthermore, 200 BP/PPF demonstrated superior cytocompatibility and osteogenic effects, leading to the degradation of PPF bone cement and enabling it to possess photothermal properties. When exposed to an 808-nm laser, the temperature of the bone cement increased to 45–55 °C. Furthermore, haematoxylin and eosin-stained sections from the in vivo toxicity test did not display any anomalous tissue changes. Conclusion BP/PPF exhibited mechanical properties similar to that of bone: outstanding photothermal properties, cytocompatibility, and osteoinductivity. BP/PPF serves as an effective degradable bone cement and holds great potential in the field of bone regeneration.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje