A stereo spatial decoupling network for medical image classification
Autor: | Hongfeng You, Long Yu, Shengwei Tian, Weiwei Cai |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Complex & Intelligent Systems, Vol 9, Iss 5, Pp 5965-5974 (2023) |
Druh dokumentu: | article |
ISSN: | 2199-4536 2198-6053 |
DOI: | 10.1007/s40747-023-01049-9 |
Popis: | Abstract Deep convolutional neural network (CNN) has made great progress in medical image classification. However, it is difficult to establish effective spatial associations, and always extracts similar low-level features, resulting in redundancy of information. To solve these limitations, we propose a stereo spatial discoupling network (TSDNets), which can leverage the multi-dimensional spatial details of medical images. Then, we use an attention mechanism to progressively extract the most discriminative features from three directions: horizontal, vertical, and depth. Moreover, a cross feature screening strategy is used to divide the original feature maps into three levels: important, secondary and redundant. Specifically, we design a cross feature screening module (CFSM) and a semantic guided decoupling module (SGDM) to model multi-dimension spatial relationships, thereby enhancing the feature representation capabilities. The extensive experiments conducted on multiple open source baseline datasets demonstrate that our TSDNets outperforms previous state-of-the-art models. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |