Autor: |
Ruimin Li, Qifei Du, Ming Yang, Haoran Tian, Yueqiang Sun, Xiangguang Meng, Weihua Bai, Xianyi Wang, Guangyuan Tan, Peng Hu |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Atmosphere, Vol 14, Iss 4, p 742 (2023) |
Druh dokumentu: |
article |
ISSN: |
2073-4433 |
DOI: |
10.3390/atmos14040742 |
Popis: |
GNSS single-frequency occultation processing technology has the advantage of simple instrumentation, but it is not clear about the accuracy of the Beidou-based single-frequency occultation processing. This paper verifies the single-frequency occultation processing algorithm of the BeiDou navigation system (BDS) and analyzes its accuracy based on occultation observation data from the FY3E satellite. The research aimed to verify the single-frequency ionospheric relative total electron content (relTEC), analyze the accuracy of the reconstructed second frequency B3∗’s excess phase Doppler, and analyze the accuracy of the refractive index products. Results: (1) As for relTEC and excess phase Doppler, the correlation coefficient between single-frequency occultation processing and dual-frequency occultation processing is greater than 0.95. (2) The relative average deviations of the excess phase Doppler of B3∗ are mostly less than 0.2%, and the relative standard deviations are mostly around 0.5%. (3) The bias index and root mean square index of single/dual-frequency inversion have good consistency compared with ERA5 data. All the results show that the single- and dual-frequency inversion refractive index products have comparable accuracies, and the accuracy of the standard deviation of single-frequency inversion refractive index products over 25 km being slightly lower than that of dual-frequency inversion refractive index products. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|