Autor: |
Zhen Wang, Jian Zhang, Fengqin Zhang, Changbao Qi |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 14, Iss 1, Pp 1-12 (2024) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-024-62306-6 |
Popis: |
Abstract The purpose of this study was to investigate the effect of Al content on Fe–Ni–Al coatings. A Fe–Ni–Al coating was prepared using a semiconductor laser, and the influence of the Al content on the microstructure and properties of the coating was examined. The microstructure of the coating was characterized using scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The coefficient of thermal expansion of the coating was measured using a static thermomechanical analyzer. The microhardness and wear performance of the coating were analyzed using a microhardness tester and a wear testing machine. The results were as follows. The addition of Al to the Fe–Ni ferroalloy powder resulted in the in situ formation of an AlNi/Fe–Ni laser cladding layer. When the Al content was low, the coating mainly consisted of γ-[Fe,Ni] austenite. As the Al content increased, the matrix phase structure of the cladding layer transformed into the α phase. Consequently, the Invar effect was gradually compromised, leading to the generation of defects in the coating. When the Al content was 4%, the coating performance improved while maintaining a low coefficient of thermal expansion. At this point, there were relatively few cracks in the cladding layer, and it exhibited the best wear resistance. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|