Multilayer Data and Artificial Intelligence for the Delineation of Homogeneous Management Zones in Maize Cultivation

Autor: Diego José Gallardo-Romero, Orly Enrique Apolo-Apolo, Jorge Martínez-Guanter, Manuel Pérez-Ruiz
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Remote Sensing, Vol 15, Iss 12, p 3131 (2023)
Druh dokumentu: article
ISSN: 2072-4292
DOI: 10.3390/rs15123131
Popis: Variable rate application (VRA) is a crucial tool in precision agriculture, utilizing platforms such as Google Earth Engine (GEE) to access vast satellite image datasets and employ machine learning (ML) techniques for data processing. This research investigates the feasibility of implementing supervised ML models (random forest (RF), the support vector machine (SVM), gradient boosting trees (GBT), classification and regression trees (CART)) and unsupervised k-means clustering in GEE to generate accurate management zones (MZs). By leveraging Sentinel-2 satellite imagery and yielding monitor data, these models calculate vegetation indices to monitor crop health and reveal hidden patterns. The achieved classification accuracy values (0.67 to 0.99) highlight the potential of GEE and ML models for creating precise MZs, enabling subsequent VRA implementation. This leads to enhanced farm profitability, improved natural resource efficiency, and reduced environmental impact.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje