LEADOR: A Method for End-To-End Participatory Design of Autonomous Social Robots

Autor: Katie Winkle, Emmanuel Senft, Séverin Lemaignan
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Frontiers in Robotics and AI, Vol 8 (2021)
Druh dokumentu: article
ISSN: 2296-9144
DOI: 10.3389/frobt.2021.704119
Popis: Participatory design (PD) has been used to good success in human-robot interaction (HRI) but typically remains limited to the early phases of development, with subsequent robot behaviours then being hardcoded by engineers or utilised in Wizard-of-Oz (WoZ) systems that rarely achieve autonomy. In this article, we present LEADOR (Led-by-Experts Automation and Design Of Robots), an end-to-end PD methodology for domain expert co-design, automation, and evaluation of social robot behaviour. This method starts with typical PD, working with the domain expert(s) to co-design the interaction specifications and state and action space of the robot. It then replaces the traditional offline programming or WoZ phase by an in situ and online teaching phase where the domain expert can live-program or teach the robot how to behave whilst being embedded in the interaction context. We point out that this live teaching phase can be best achieved by adding a learning component to a WoZ setup, which captures implicit knowledge of experts, as they intuitively respond to the dynamics of the situation. The robot then progressively learns an appropriate, expert-approved policy, ultimately leading to full autonomy, even in sensitive and/or ill-defined environments. However, LEADOR is agnostic to the exact technical approach used to facilitate this learning process. The extensive inclusion of the domain expert(s) in robot design represents established responsible innovation practice, lending credibility to the system both during the teaching phase and when operating autonomously. The combination of this expert inclusion with the focus on in situ development also means that LEADOR supports a mutual shaping approach to social robotics. We draw on two previously published, foundational works from which this (generalisable) methodology has been derived to demonstrate the feasibility and worth of this approach, provide concrete examples in its application, and identify limitations and opportunities when applying this framework in new environments.
Databáze: Directory of Open Access Journals