Autor: |
S. L. Downs, S. A. Madhi, L. Van der Merwe, M. C. Nunes, C. P. Olwagen |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-021-03127-9 |
Popis: |
Abstract Current real-time high-throughput Polymerase Chain Reaction (qPCR) methods do not distinguish serotypes 6A from 6B, 18C from 18A/B and 22F from 22A. We established a nanofluidic real-time PCR (Fluidigm) for serotyping that included Dual-Priming-Oligonucleotides (DPO), a Locked-Nucleic-Acid (LNA) probe and TaqMan assay-sets for high-throughput serotyping. The designed assay-sets target capsular gene wciP in serogroup 6, wciX and wxcM in serogroup 18, and wcwA in serogroup 22. An algorithm combining results from published assay-sets (6A/B/C/D; 6C/D; 18A/B/C; 22A/F) and designed assay-sets for 6A/C; 18B/C/F; 18C/F, 18F and 22F was validated through blind analysis of 1973 archived clinical samples collected from South African children ≤ 5-years-old (2009–2011), previously serotyped with the culture-based Quellung method. All assay-sets were efficient (92–101%), had low variation between replicates (R2 > 0.98), and were able to detect targets at a limit of detection (LOD) of |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|