Popis: |
This paper investigated the effects of varying noise levels and varying lighting levels on speech and gesture control command interfaces for aerobots. The aim was to determine the practical suitability of the multimodal combination of speech and visual gesture in human aerobotic interaction, by investigating the limits and feasibility of use of the individual components. In order to determine this, a custom multimodal speech and visual gesture interface was developed using CMU (Carnegie Mellon University) sphinx and OpenCV (Open source Computer Vision) libraries, respectively. An experiment study was designed to measure the individual effects of each of the two main components of speech and gesture, and 37 participants were recruited to participate in the experiment. The ambient noise level was varied from 55 dB to 85 dB. The ambient lighting level was varied from 10 Lux to 1400 Lux, under different lighting colour temperature mixtures of yellow (3500 K) and white (5500 K), and different background for capturing the finger gestures. The results of the experiment, which consisted of around 3108 speech utterance and 999 gesture quality observations, were presented and discussed. It was observed that speech recognition accuracy/success rate falls as noise levels rise, with 75 dB noise level being the aerobot’s practical application limit, as the speech control interaction becomes very unreliable due to poor recognition beyond this. It was concluded that multi-word speech commands were considered more reliable and effective than single-word speech commands. In addition, some speech command words (e.g., land) were more noise resistant than others (e.g., hover) at higher noise levels, due to their articulation. From the results of the gesture-lighting experiment, the effects of both lighting conditions and the environment background on the quality of gesture recognition, was almost insignificant, less than 0.5%. The implication of this is that other factors such as the gesture capture system design and technology (camera and computer hardware), type of gesture being captured (upper body, whole body, hand, fingers, or facial gestures), and the image processing technique (gesture classification algorithms), are more important in developing a successful gesture recognition system. Some further works were suggested based on the conclusions drawn from this findings which included using alternative ASR (Automatic Speech Recognition) speech models and developing more robust gesture recognition algorithm. |