Autor: |
Joel Siegel, Shinho Kim, Margaret Fortman, Chenghao Wan, Mikhail A. Kats, Philip W. C. Hon, Luke Sweatlock, Min Seok Jang, Victor Watson Brar |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 15, Iss 1, Pp 1-7 (2024) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-024-47229-0 |
Popis: |
Abstract We theoretically describe and experimentally demonstrate a graphene-integrated metasurface structure that enables electrically-tunable directional control of thermal emission. This device consists of a dielectric spacer that acts as a Fabry-Perot resonator supporting long-range delocalized modes bounded on one side by an electrostatically tunable metal-graphene metasurface. By varying the Fermi level of the graphene, the accumulated phase of the Fabry-Perot mode is shifted, which changes the direction of absorption and emission at a fixed frequency. We directly measure the frequency- and angle-dependent emissivity of the thermal emission from a fabricated device heated to 250 °C. Our results show that electrostatic control allows the thermal emission at 6.61 μm to be continuously steered over 16°, with a peak emissivity maintained above 0.9. We analyze the dynamic behavior of the thermal emission steerer theoretically using a Fano interference model, and use the model to design optimized thermal steerer structures. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|